我要投搞

标签云

收藏小站

爱尚经典语录、名言、句子、散文、日志、唯美图片

当前位置:多盈娱乐 > 多路分配器 >

详解功率分配器设计与仿真

归档日期:05-24       文本归类:多路分配器      文章编辑:爱尚语录

  全称功率分配器,英文名Power divider,是一种将一路输入信号能量分成两路或多路输出相等或不相等能量的器件,也可反过来将多路信号能量合成一路输出,此时可也称为合路器。一个功分器的输出端口之间应保证一定的隔离度。功分器的主要技术参数有功率损耗(包括插入损耗、分配损耗和反射损耗)、各端口的电压驻波比,功率分配端口间的隔离度、功率容量和频带宽度等。

  功分器全称功率分配器,是一种将一路输入信号能量分成两路或多路输出相等或不相等能量的器件,也可反过来将多路信号能量合成一路输出,此时可也称为合路器。一个功分器的输出端口之间应保证一定的隔离度。功分器的主要技术参数有功率损耗(包括插入损耗、分配损耗和反射损耗)、各端口的电压驻波比,功率分配端口间的隔离度、功率容量和频带宽度等。

  功分器的功能是将一路输入的卫星中频信号均等的分成几路输出,通常有二功分、四功分、六功分等等。功分器的工作频率是950MHz-2150MHz,卫视烧友想必对功分器是再熟悉不过了。以上三个器件的用途和性能是完全不同的,但在日常使用中往往容易把名称混淆了,使得人们在使用中容易产生困惑.*接收系统中的多台卫星接收机,共用一面天线,几面天线共用一台卫星接收机,以及两台以上卫星接收机和两面以上天线共用,它们之间的连接除了依靠电缆之外,主要是靠切换器的组合编程来实现的。

  电路中,往往采用结构比较简单,实现较容易,且带宽又较宽的分路器来实现功率分配的功能。本次设计就是采用分路器的方法,一路输入分为两路输出。和其他微带电路元件一样,分路器也有一定的频率响应特性。当频带边缘频率之比f2/f1=1.44时,输入驻波比∀《1.22,能基本满足输出两口隔离度》20dB的指标要求。但当=2时,其各部分的指标开始下降,隔离度只有14.7dB,输入驻波比也达到1.42.。为了进一步加宽工作带宽,可以用多节的宽频带分功率分配器,即和其他一些宽频带器件一样,可以增加节数,即增加#g/4线段和相应的隔离电阻R的数目。分析结果表明,即使节数增加不多,各指标会有较大的改善,工作频带也有较大的展宽。例如,当n=2,即二节的二等分分功率器,当f2/f1=2时,驻波比∀《1.11,隔离度》27dB。当n=4,f2/f1=4时,驻波比∀《1.10,隔离度》26dB。f2/f1=10时,驻波比∀《1.21,隔离度》19dB。N节宽频带二等分功分器的一般形式,如图2所示。因为是二等分,所以上、下两部分的电路参量相等,因此用奇、偶模分析法很方便。功分器的技术指标包括频率范围、承受功率、主路到支路的分配损耗、输入输出间的插入损耗、支路端口间的隔离度、每个端口的电压驻波比等。

  2、承受功率。在大功分器/合成器中,电路元件所能承受的最大功率是核心指标,它决定了采用什么形式的传输线才能实现设计任务。一般地,传输线承受功率由小到大的次序是微带线、带状线、同轴线、空气带状线、空气同轴线,要根据设计任务来选择用何种线、分配损耗。主路到支路的分配损耗实质上与功分器的功率分配比有关。如两等分功分器的分配损耗是3dB,四等分功分器的分配损耗是6dB。理想分配损耗(dB)=10Log(1/N)N为功分器路数

  传输线结构的功率分配器[如图1(a)所示,输入端口特性阻抗为Z0,两段分支微带线,特性阻抗特性阻抗为Z0,两段分支微带线和R3。

  取k=1,即得到3dB Wilkinson功分器的各参数值为:R2=R3=Z0,Z02=Z03=2Z0,为了增加隔离度在Port2,3之间添加了一个电阻R=2Z0,其结构如图1(b)

  由对称关系可知,端口1,3间的耦合度等于端口1,2间的耦合度。在理想情况下,中心频率处的回波损耗和隔离度应该接近负无穷大,耦合度应该尽量接近3dB。本文设计的功分器工作在0.9~1.1GHz频段,中心频率1.0GHz,采用双面敷铜的FR-4介质板,相对介电常数r=4.3,厚度h=1.5mm,要求通带内各端口反射系数小于-20dB,端口2和端口3之间的隔离度小于-20dB,端口1和端口2之间的耦合度小于3.5dB。

  (2)、Wilkinson功分器的仿线]中传输线特性阻抗计算方法,可以得到特性阻抗为Z0=50的传输线的传输线传输线mm。得到上面这些初始值后就可以开始进行下一步的软件仿真,在ADS的软件环境中选取各种需要的微带线工具,根据上面获得的数据设置好各个元件的初值。将1/4的传输线作为优化指标,然后不断进行迭代运算和优化,最后得到W2=1.8mm,L=42.35mm,仿线中的实线、仿线)、测试结果

  功分器各性能指标的测量采用Agilent公司的E5071B网络分析仪,测试时3个端口的其中之一接50匹配负载,S11,S21,S23的测试值与仿线所示,从测试结果可见,中心频率有很小的偏移,S21产生一定误差,这是由于实验采用的双面敷铜介质板本身功率损fr-4耗较大且实际介电常数有偏差的原因。其余各指标均达到设计目标,且测试与仿真值整体上吻合较好。

  实际应用中,常需要将某一输出功率按一定的比例分配到各分支电路中,例如:在相控雷达系统中,要将发射机功率分配到各个发射单元中去;在GSM通信系统中,从相环

  对于微带功率分配器我们常用的是功率等分的功率分配器,有很多软件对于功率分配器的仿真都是可以的,常用的有ESSOF,ADS,Microwave Office等,由于软件仿真的结果是理想化的,所以插入损耗与实际的差别由于电阻接头等引的误差是不可避免的,一般情况是由实际材料等决定的。而对于各个端口的回波损耗及隔离度,ESSOF,Microwave Office的仿真结果很接近,与实验结果相比较而言,一般仿线dB实验出来的才能达到21dB,但仿线dB后实验的结果变化并不大,这可能与电缆、接头等的回波损耗有关系的。如果采用的是ADS,由于建模更接近真实,考虑到拐角等,一般情况下回波损耗及隔离度仿线dB左右,也就是说仿线dB。

  [1]Reinhold Ludwig,Pavel Bretchko.射频电路设计应用[M]。王子宇,译。北京:电子工业出版社,2002.[2]刘学观,郭辉萍。微波技术与天线[M]。西安:西安电子科技大学出版社,2004.

本文链接:http://ayraswimwear.com/duolufenpeiqi/281.html